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Institute of Metal Physics, Sverdlovsk 620219, USSR 
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Abstract. A calculation scheme is discussed that permits the investigation of both transverse 
and longitudinal fluctuations01 local magnetization in 3d magnets. It is based on the use of 
a band-structure calcularion method for the study of excited magnetic states. Calculations 
were carried out for body-centred cubic Fe and face-centred cubic Ni. The probability 
distribution of the local magnetic moment length is evaluated lor the paramagnetic region. 
Some mmparisons are made. illustrating the role of longitudinal fluctuations as well as the 
rolc of electronic characteristics of excited states. 

1. Introduction 

In spite of the success of band-structure calculations in the description of the ground- 
state properties of ferromagnetic 3d metals [l], the explanation of the temperature 
dependences of these properties on the basis of the traditional Stoner approach meets 
major difficulties [2]. At present it is commonly acknowledged that overcoming these 
difficulties is possible only within the framework of a theory combining the concept of 
the itinerant nature of electrons with allowance for local fluctuations of magnetization. 
A variety of such theoretical approaches have been suggested (see e.g. [2-7]), which 
differ substantially in the models of electronic interactions adopted. 

Most of the research (let us call it approach I) was carried out with the use of a 
phenomenologicalexpression forthe freeenergyoftheproblemor within the framework 
of the one-band Hubbard model [2,4,7]. This allows one to estimate electronic charac- 
teristics of the excited states of a magnetic crystal without using quite complicated and 
time-consuming methods of electronic energy structure calculations. These calculations 
have permitted a qualitative or semi-quantitative description of numerous experiments 
to be made. However, the quantitative reliability of these methods is restricted. 

Therefore, there is strong interest in the development of approaches based on more 
complicated models of interactions defining the electronic structure. These models 
demand the use of band-structure calculation methods. Along this line there is also 
plenty of work, which, in turn, can be subdivided into two subgroups. The first subgroup 
(approach Ila) contains calculations carried out with the KKR-CPA (Korringa-Kohn- 
Rostokercoherent-potential approximation) method (see [ 5 , 8 , 9 ]  and further papers). 
The theoretical scheme suggested here [5] is a substantial step in the extension of 
the density-functional theory to problems concerning the thermodynamics of itinerant 
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magnets. Unfortunately, thisscheme issocomplicated that, despite the use ofthe single- 
site approximation, concrete calculations have been carried out for the paramagnetic 
state only. 

Unlike the KKR-CPA method, which is aimed at a direct calculation of statistically 
averaged values, the second subgroup of investigations (approach IIb) puts an accent 
on the detailed study of electronic characteristics of individual excited non-collinear 
magnetic configurations [ 6 ] .  On the basis of these calculations, estimations of various 
physical parameters were made [lo,  111 and conclusions on the tendencies in the tem- 
perature behaviour of physical properties were drawn [lo-171. The results of the cal- 
culations of separate magnetic structures were used for simple parametrizations of the 
complete variety of excited magnetic configurations and, in the next step. for the 
construction of various schemes of statistical averaging [11,14, IS]. 

On the whole, each of the approaches-I, 1Ia and IIb-has its own advantages. 
Therefore, these approaches are to be considered as supplementary to one another. 
However, besides the differences connected with the adopted model of electronic 
interactions, there is another important difference that concerns the allowance for 
the longitudinal fluctuations of local magnetization, which may lead to difficulties in 
comparing the results of different approaches. 

In most papers belonging to approach I the longitudinal fluctuations of local mag- 
netization are taken into account. These fluctuations are introduced into the theory 
either phenomenologically or, more consistently, using the Stratonovich-Hubbard 
transformation for the Hubbard Hamiltonian partition sum. In the first case the free 
energy Fof a system is estimated by the formula [2] 
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exp(’-F/T) = I am(r) exp{-~[m(r ) l /q  (1) 

where the functional integral is carried out over variousspin densities, which are treated 
classically. Here it  is supposed that each spin configuration corresponds to a crystal 
excited state considered in adiabatic approximation; Y [ m ( r ) ]  is the energy functional. 
In the second case. using the Stratonovich-Hubbard transformation and static approxi- 
mation [2.4,7], each excited state is connected with a definite configuration of atomic 
‘exchange’fields,~which assume arbitrary values and diiKcti6iis. The fluctuations of 
values and directions of exchange fields are closely connected with the fluctuations of 
the corresponding characteristics of the atomic magnetic moments. 

On the other hand, in approaches IIa and IIb the amplitude fluctuations of magnetic 
moments were not considered. Each excited state wasdefined by the directionsofatomic 
moments, the lengthsof whichare to be found inself-consistentcalculations. Thus, from 
all configurations with given directions of magnetic moments, only the one with the 
lowest energy is considered. 

This differcnce between approaches I and 11 is very important and may substantially 
influence the estimation of such significant physical parameters as the average value of 
the local atomic moment and its longitudinal stiffness [2]. Moreover, the correctness of 
the notation of well defined local moment may be substantially dependcnt on the 
magnitude and characterof such fluctuations. The longitudinal fluctuationsof magnetic 
momentscannoticeablyinfluencethe peculiaritiesofamagneticphase transition[2.19]. 

In the present paper we make an attempt to study the longitudinal fluctuations of 
atomic moments within the framework of approach IIb. In section 2, we discuss a 
computational scheme allowing one to use band-structure calculation methods for the 
investigationoflongitudinalfluctuations. Insection3, the resultsofstudyingpeculiarities 
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of static longitudinal fluctuations in Fe and Ni are given. In section 4, a simple statistical 
averaging is carried out to obtain an estimation of the local magnetic moment length 
distribution. This distribution is compared with the counterpart calculated within 
approach I. The temperature dependence of the average local magnetic moment in the 
paramagneticstate is also estimated. 

2. Calculation technique 

As follows from the introduction, one of the main purposes of the present work is the. 
study, by means of band-theory methods, of total energy E({mn}) as a function of lengths 
and directions of magnetic moments of all atoms. Evidently, the exact calculation of 
E({m,}) is not possible and one must use some, simple, parametrization of this depen- 
dence [14,18]. Previous calculations of non-collinear magnetic configurations of iron 
[11,13,14] have shown that the average angle between magnetic moments of nearest 
neighboursisan important parameter characterizing electronicstructure. Ifwe take into 
consideration longitudinal fluctuations of local moments, it is necessary to introduce 
also a parameter characterizing the average length of moments. We shall suppose that 
localelectroniccharacteristics of a given atom are defined by two parameters: an average 
angle between magnetic moments of the given and neighbouring atoms, and an average 
length of these atoms' magnetic moments. The easiest way to estimate these parametric 
dependences is the calculation of the electronic characteristics of spiral magnetic con- 
figurations. Previous investigations [6, 1&15] have shown that the study of a sufficiently 
wide set of the simplest non-collinear configurations-spiral configurations-allows one 
to draw important conclusions concerning the temperature behaviour of 3d magnets. 

The method used for the calculation of spiral structures is described in section 2.1. 
Peculiarities of the calcuation of excited states are discussed in section 2.2. 

2.1. Method of band-structure calculations for spiral magnetic configurations 

Generalizations of various methods of band-structure calculations in the case of non- 
collinear magnetic configurations were suggested in [6,2&24]. A substantial part of the 
calculations of non-collinear configurations was devoted to spiral magnetic structures. 
In [6,1&12] a large cluster was considered. The calculations were carried out for the 
tight-binding Hamiltonian with the recursion method. In [21,22] it was shown that 
allowance for the generalized symmetry of the problem permits one to simplify the 
calculation fundamentally. This property was used in [14,15], where the calculations 
were carried out by the KKR method. 

A comparison of the results obtained with the KKR method [14] and those obtained 
on the basisofthe tight-bindingHamiltonian [6,10,11] shows that they arecloseenough 
if the tight-binding scheme includes s, p and d electron states. As the use of the KKR 
method needs much more computer time, in the present work all calculations were 
carried out with the tight-binding method (TBM). 

Let us write the one-electron Hamiltonian of a non-collinear magneticconfiguration 
in the form 

H =  -A + ~ U " V ( / r - t . l ) ( U " ) - '  (2) 
n 
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where 
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V(r) = IVc(r) + Vex(r)II + AV&) (3) 

(4) 

In (2)-(4), Vc is the atomic Coulomb potential; V,, & AV,, are the components of the 
exchange potential that act on electronic states with correspondingly negative and 
positive spin projection on the atomic moment direction; l i s  the unit matrix of second 
opder; f n  are the lattice vectors; and U" is the matrix of spin rotation [22] connecting 
the global coordinate system with the local coordinate system, the z axis of which is 
paraller to the magnetic moment of thenth atom. 

In the present paper we consider spiral magnetic configurations 

e, = (sinpcos(q*t,). sinpsin(q.t,),cosp) (5 )  

where e, is a unit vector parallel to the nth atom magnetic moment, q is the vector of 
spiral, and p is the angle between the z axis of the global coordinate system and atomic 
moments. 

The basis functions for the expansion of the crystal electronic state Y(r) are con- 
structed from the one-centre functions, which have the form qyo(r)xq in the local 
coordinate systems. Here y labels different atomic-like functions with given U, and 

x+ = (A) x- =(;I 
Taking into consideration thegeneralized Bloch theorem 1221 we shall use basis functions 

aYOk(r) = N-[I2  exp(ik. t n )  Py.AI' - t n l P " x 0  (6) 
n 

and the decomposition takes the form 

Supposing that functions (6) are orthonormal we obtain the following system of linear 
equations: 

c (TY0,",'+ + Vyo.w - ~ , . ,~dE)CyO = 0. (8) 
w 

(We omit the index showing the dependence of quantities on k.) Here 
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If we suppose that in formula (10) only the one-centre (i.e. n = n’ = 0) integrals of the 
potential (3) are not equal to zero, then the secular matrix of the problem (8) may be 
represented in the form 

). (11) 
’ &/3)H+ (k - Iq) + sin’ ( @ ) H +  (k  + 4q) - tsin/3[H0 (k - 14) - Ho (k f tq)] (cos( -tsinp[Ho(k-qq)-Ho(k+tq)g)l sin2(&/3)H-(k-1q)+cos’(t/3)H-(k+lq) 

Here, HJk)  is the secular matrix of the traditional TBM written for ferromagnetic crystal 
states with spin projection c, which experience the potential V ,  + V ,  - uAV,,; Ho(k) 
is the secular matrix of the TBM corresponding to the nonmagnetic crystal with 
AV;, = 0. 

The form (11) of the secular matrix is convenient for calculations because it reduces 
the construction of the spiral-structure matrix mainly to the calculation of the secular 
matrixofthe traditional~~M. Formula (11) isexact for the Hamiltonian usedin [6, 10, 111 
due to neglect of multicentre integrals of the exchange potential. 

In the present work we also use formula (11). The calculation of matrices H,, and Ho 
was carried out on the basis of the interpolation scheme of Slater and Koster [25]. 
Parametersof the scheme were constructed on the basis of parameters from [26]. 

In our calculations the value of the atomic magnetic moment may deviate from its 
value in the ferromagnetic ground state 1261 as a result of both non-collinearity of atomic 
spins and allowance for longitudinal fluctuations of magnetic moment. To take this 
property into consideration, we used the following supposition. Let CO, be the inter- 
polation scheme parameters of [26], which correspond to the ferromagnetic states with 
spin projection U ( U  = 21) on the magnetization direction. If, in the next step of the 
iteration process, an initial atomic moment was equal to mi,, then the matrix H ,  in (1 1) 
was calculated with the use of the parameters 

CO = i(C: + CO_) + lo(C0, - cO_)m,,/m,(o) (12) 

where q ( 0 )  is the atomic moment of the ferromagnetic ground state. To calculate Ho 
we used parameters (12) corresponding to mh = 0. 

It is necessary to note that, when the formula (12) is used for all coefficients of the 
interpolation scheme, the form (11) of the secular matrix is not exact because in the 
derivation of (11) the spin dependence of one-centre contributions only was supposed. 
Nevertheless, in calculating diagonal blocks, we did not average coefficients CO cor- 
respondingtomulticentrecontributions[26] because, first, thespindependenceofinitial 
multicentre coefficients CO is much less than the U dependence of corresponding one- 
centre coefficients, and secondly, formula (11) is exact for the limiting cases of ferro- 
magnetic and non-magnetic crystals, which allowed us to obtain in the ferromagnetic 
case the results of [26]. 

As we have assumed a dependence of coefficients (12), and therefore of secular 
matrix (ll),  on the atomic moment value, this value is to be calculated self-consistently. 
Using the results of band calculations the projection of the nth atom magnetic moment 
on the direction e, defined by (5) may be found from the formula 

maul = E c y 0 k  (13) 
?fk 

where the summation is carried out over filled states. For each magnetic configuration, 
the self-consistency condition may be written in the form moui = min. 
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To calculate the parametric dependence of total energy we have chosen spiral 
structures demanding the lowest computation time. In  the case of BCC Fe, the spiral 
structureswithq = (O,O, h / a )  andvariousp(thoseare thestructurescalled'alternating 
tilt' in [6,10,11]) were chosenforcalculations because for these magneticconfigurations 
thevolumeofthe reciprocal-spaceirreducibledomain (ID) isequaltothe 1/48thBrillouin 
zone (BZ) volume [27]. If we denote by 0 an average angle between the spin of the given 
atom and the spins of neighbouring atoms, for this type of spiral structure 0 = 28. 

Symmetry anaIysis [27] shows that in the case of FCC Ni, the minimal volume of the 
ID is equal to the 1/16th BZ volume. In particular, this volume of the ID is realized for 
the spiral structures with q = (0, 0,2T/a) and arbitrary 8 (for such spiral structures 0 =I 
$8) and also for plane spiral structures with 8 = 90" and any q parallel to the z axis. 
(here 0 = qa/3). We carried out calculationsof electronic characteristics of both spiral 
structures. 

2.2.  Calculation of excited magnetic states 

As was noted above, our aim is the calculation of electronic characteristics for non- 
collinear magnetic configurations with given directions and lengths of atomic magnetic 
moments. In the traditional self-consistent band-structure calculation, these quantities 
cannot be evaluated because the complete self-consistency of lengths and directions of 
magnetic moments leads to the lowest energy state. In the cases of Fe and Ni this is the 
ferromagnetic ground state 111. Therefore the calculation must be carried out with 
allowance for the restrictions imposed on the lengths and directions of atomicmoments. 
I n  [5,28-311 it is shown that the calculation with a constraint imposed on the parameters 
of magnetic moments is equivalent to self-consistent band-structurc calculations free 
from these restrictions if each atom experiences the action of an 'exchange' or 'magnetic' 
field h,. (Note that here we can draw an analogy with the random 'exchange' fields 
appearing after the Stratonovich-Hubbard transformation of Hubbard Hamiltonian 
partition sum [2,4,7].) 

At present there is a quite restricted number of band-structure calculations carried 
out for excited magnetic configurations. Investigations of excited magnetic states with 
collinear magnetic structure were carried out in [32-341 using the fixed-spin-moment 
method (28,311. For ferromagnetic configurations, calculations are simplified sub- 
stantially owing to the fact that the electronic states of a ferromagnetic crystal are 
characterized by a definite value of the spin projection on the magnetization axis. This 
permits one not to change the traditional scheme of a ferromagnetic crystal calculation 
and to take the constraining fields into consideration only at the stage of the search for 
the order of filling of the electronic states [28,31]. 

Non-collinear excited magnetic states were investigated within the framework of 
approaches 1Ia and 1Ib. As was mentioned in the introduction, longitudinal fluctuations 
of magnetic moments were not included in the considerations. 

In [6,10-17] belonging to approach Ilb the projections of atomic magnetic moments 
on chosen directions were calculated self-consistently using a scheme analogous to that 
described in section 2.1. The magnetic moment components perpendicular to the chosen 
directions were not considered. This approach corresponds to the supposition that there 
exist fields h. [a] perpendicular to the directions e, and that the effect of these fields 
reduces to the suppression of the perpendicular component of magnetic moments. 

Under the derivation of the formulae of the KKR-CPA method [5] used in approach 
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IIa there were alsosuppositionsreducingtheroleofconstrainingfields to the suppression 
of magnetic density component perpendicular to vectors e,. Therefore, as in approach 
IIa, the fields were not taken into consideration explicitly. 

In the present paper we aim to investigate both the transverse and longitudinal 
spin fluctuations, Hence fields h, must, in general, have two non-zero components 
perpendicular and parallel to the corresponding vectors e,. The most general form of 
the secular matrix used in our calculations may be written as 

where He,, are the corresponding blocks of matrix (11). h and h,, are the parallel and 
perpendicular components of fields h, and E is the unit matrix. 

As non-collinear magnet states do not have definite spin indices, the influence of 
longitudinal component h does not reduce merely to the shift in energy of the states 
calculated with h = 0. Therefore it is necessary to take the presence of the fields into 
consideration at the stage of energy spectrum calculations. The calculations were organ- 
ized as follows. We fixed a value of h and found the self-consistent values of M cor- 
responding to it. 

We used two different schemes of self-consistent calculations. The first scheme 
(scheme A) is based on the supposition of [5,6,14] that the perpendicular component 
of the constraining field may be excluded from consideration if the magnetic moment 
component parallel to the chosen direction is calculated self-consistently but the per- 
pendicular component is not taken into consideration. In the second scheme (scheme 
B) the perpendicular component h ,  of the field is taken into consideration explicitly. In 
the latter case it is necessary to find h, for which the perpendicular component of 
magnetic moment is equal to zero and simultaneously the longitudinal component is 
self-consistent. Note that, making an explicit allowance for hl (scheme B), one imposes 
conditions on both interdependent components of magnetic moments. Therefore the 
iteration procedure demands much more computational time. 

Knowledge of the interconnection of magnetic moments m,and fields h,permitsone 
to evaluate the total energy of excited states using the formula 

Wm,I ) / am,  = h, (15) 

obtained in [28] within the framework of the local density-functional theory (see also 
[29,30,32]). 

Note that in recent work r351 dealing with a tight-binding Hamiltonian a formula was 
suggested for total energy which guarantees that iota1 energy calculated numerically will 
be minimal for the self-consistent state, i.e. in the case of zero constraining fields. The 
method considered above satisfies this condition too. 

3. Excited magnetic states of iron and nickel 

3.1. Iron 

First let usconsider the angular dependence of the self-consistent localmagneticmoment 
calculated for zero longitudinal field h. We shall use the notation mu(e)  for this function. 
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I-cos e 
Figure 1. The mo(S) curves of Fe calculated using 
the physical model of [h] .  Circlesshowour results; 
triangles represent the results of [6] .  Our cal- 
culations have given also a zero branch of m,iO) 
lying within an angular intewal from Oh till IM", 
whereSbislessthan 150". (Wedidnotaimto find 
the exact value of Ob) 

m,, [ P B ~  

FigureZ.Them,,, =flm,.) curvesof Fecalculated 
using the physical model of 161 for the values of 
angle 0 equal to 0" (curve I). 150" (curve 2) and 
180" (curiae 3). The broken straight line is the line 
mou, = m,. The discussion of the broken curve 
attachedtocurve2isgivenin the text. Forpoints 
ofcurve I .  bothcoordinates mfn and m..,are to he 
multiplied hy 2.5 

Foriron,calculationsofmo(0) havebeencarriedoutearlierin[6,11,14,15].Itisuseful 
to compare the results obtained with different models of Hamiltonian and various 
methods of calculation 

Figure 1 represents two curves mo(0),  which were calculated with two different 
methods for the same physical model [6] making allowance for the d electrons only. 
On the whole, bothcalculations have givensimilarresults. However there isapeculianty 
that has not been noted in [6] but appeared in our calculations: the function mu(@) 
consists of two branches, each of \**hich is defined only for a part of angle 0 values. There 
is an angular interval where the calculation gives two different stable states of the system. 
To find all self-consistent solutions of the problem we restored the form of the curve 
movl = f(min) for a wide range of m,". Figure 2 shows the typical forms of calculated 
curves for three different intervals of angle 0. Curve 1 corresponds to the case of one 
stable state of the system. The self-consistent moment of this state is not equal to zero. 
Curve 2 gives two stable states, one of which has zero magnetic moment. Finally, curve 
3 corresponds to the case of large 0, where the only self-consistent solution is equal to 
zero. 

The form of angular dependence of mo obtained in our calculations (figure 1) is 
completely analogous to one of the curves discussed in [32,33J in connection with the 
investigation of the volume dependence of the ferromagnetic atomic moment of 3d 
metals. Corresponding total energy curves versus atomic moment [32,33] are shown 
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m (1~d 
Figure 3. The schematic total energy curves cor- 
responding to the curves m,, = f(mi.) shown in, 
figure 2. For points of curve 1. coordinate m is to 
bemultiplied by2.5. 

0 0.5 1.0 1.5 2 

1-cos 0 

Figure 4. Angular dependence of mn for iron in 
various models: 0. the results of 1111; A, the 
resultsof [14];*, thepresentcalculation,scheme 
A; 0, the present calculation. scheme B. The 
present calculations have also given the zero 
branchofthe function in theangular interval from 
Ob till 180" (see figure 12). 

schematically in figure 3. Curve 1 has theonly minimum lying at non-zero moment value. 
Curve 2 has two minima and therefore gives two stable statesof the system. With increase 
of 0 the depth of the minimum at non-zero m decreases and for a certain value of the 
angle this minimum disappears. Curve 3 gives the only minimum at m = 0. The maxima 
of the energy on curves 1 and 2 (figure 3) correspond to self-consistent values of m also. 
But at these points the derivative of the function mout =f(m,,) exceeds unity (figure 2). 
These states are unstable. 

The form of the mo(8) curve, which assumes a continuous decrease of the magnetic 
moment from its maximal ferromagnetic value to zero in the antiferromagnetic limit [6], 
would correspond to the continuous transformation of the curve 1 minimum (figure 3) 
into the curve 3 minimum. In this case, the function E(m) (figure 3) would have the only 
minimum for all of 8, that is curves 2 in figures 2 and 3 should change in accordance with 
the broken curves shown in the figures. 

Figure 4 compares the mo(0) curves calculated for various models of Hamiltonian, 
which take into consideration s, p and d electrons. There are important peculiarities 
common to all curves. First of all, there is a wide 0 range where the value of the local 
magnetic moment is close to the ferromagnetic value. Then, the moment decreases 
rapidly to values close to 1 pB. The peculiarities of the electronic structure of iron, which 
are responsible for such behaviour of the magnetic moment, were discussed in [14,15]. 

Calculationsfor the model Hamiltonian discussed in section 2.1, like aforementioned 
calculations for the model of [6], give two branches of the mo(8) function. The second 
branch is defined for an angular interval from Ob to 180" and assumes values equal to 
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- 1st : -. 
Figure 5. The €"(e) cuwes lor iron and nickel. 
Iron: 0. the results obtained with lormula (16); 
m. the points obtained with the use of formula 

(17); [ 111. Nickel:O,theresultsobtained the broken curve represents the with results lormula 01 
(16). All calculations were carried out lor spiral 
structures with q = (O.O,Lr/o). Here we use the 
angle 8 equal to the angle between atoniic spins 
of neighbouringferromagnetic layers of the spiral 
structure. For spiral structures considered in the 
presentpaper.8= Binthecaseof~CClatticeand 
0 = I8 in the case of FCC lattice. 

K 5 10 :v.,  Y .' 
0 0.5 1.0 1.5 2.0 

5 

I-cos B 

zero. The value of the left boundary Ob is defined by the angular dependence of the 
derivative of them,,, = f(m,.) function at the point m,,, = 0. The exact calculation of this 
value has serious computational difficulties. Therefore for both Fe and Ni we restricted 
ourselves to a crude eh estimation. Testing has shown that the variation of e, within 
reasonable limits does nor change the main conclusions of the paper. 

Figure 7 shows calculated E(m) curves for various e. Note that two local minima of 
the E(m) curve for 0 = 180" correspond to two stable solutions with different m. In 
Ill.141, the questionof the existence of thesecondstable solution was not investigated. 
Therefore, a conclusion on the extent of this property dependence on physical model 
cannot be drawn. 

We calculated the mu(@) curve within both A and B schemes of self-consisteni 
calculations. As is seen from figure 4 the change of the scheme does not lead to a 
substantial change of the curve. Therefore, the supposition that the influence of h ,  
reduces to the suppression of the magnetic moment component perpendicular to the 
chosen direction seems to be correct. 

For a state realizing a total energy minimum for a fixed 0 ,  the parallel component of 
the constraining field is equal to zero. Hence. using values of h, calculated as a function 
of 0 and also the formula [28] 

which followsfrom (15), we cancalculate the totalenergyof thesestates. Thecurve thus 
obtained is shown in figure 5 and is compared with the analogous curve from [ll]. On 
the whole, the curves are in good agreement. In particular, at small 6' our curve is 
also concave upwards. (This property is important for the picture of spin disordering 
discussed in [ll, 361.) A noticeable difference between the curves takes place for large 

Figures 6 and 7 show the results of the investigation of the longitudinal static 8uc- 
e only. 
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P 

h I R y d )  m 1 1 l ~ l  

Figure6.Them(h)curvesof iron for threevaluer 
of angle 8: 8 = 0" (curve I ) ,  90" (curve 2) and 
180" (curve 3). The broken parts of  curves show 
unstable states. 

Yigure7.The E(m)curvesofironfor threevalues 
ofangle8: O=O"(curve 1).909(curve2)and180" 
(curve 3). 

tuations of the local magnetic moment for several angles 8. The calculationsof the value 
of the moment as a function of h (figure 6) were carried out using scheme A. Figure 7 
represents corresponding total energy curves evaluated with the formula 

E(m) = In"' h(m) dm 

which follows from expression (15). In figure 6 the broken curves show the solutions 
that are self-consistent but unstable at the relevant values of h. In figure 7, these states 
correspond to the parts of the E(m) curves where the second derivative is negative. 

Counting the energies of minima of the functions E(m) off the minimum of the. 
function for 0 = 0, we again obtain estimations of some points of the En( 8) curve (figure 
5 ) .  As is seen from figure 5 ,  the agreement of the results obtained with the help of 
formulae (16)and (17)isquitegood. In thecalculationswithformula (17) an approximate 
scheme A was used. Therefore the good agreement of the results may be treated not 
only as a verification of the accuracy of the calculations but also as a confirmation of the 
possibility to use scheme A for the study of the longitudinal fluctuations of atomic 
moments of iron. 

Analysis of figures 6 and 7 permits one to draw a number of important conclusions. 
First, for each 0 there are magnetic moment values that cannot be stabilized by any 
magnetic field h. For 8 = 0, these values lie below a point close to 1.39 pB. If 8 = go", 
the corresponding point is close to 1.37 pB. In the case of 0 = 18W, the curve E(m) has 
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Figure 8. The ma, = I(ms.) curve of iron for vari- 
ous values of h and 0 = 0': h = 10 (curve I ) ,  0 
(curve2). -IO(curve 3). -16.8(curve4) and -20 
(curve 5 )  mRyd. 

two local minima. For the minimum close to 1.01 pg the lower boundary of the magnetic 
moment values that may be stabilized by a constraining field lies near 0.83 pB. For the 
minimum at m = 0 the corresponding values are limited by upper boundary approxi- 
mately equal to 0.39 pB. 

The mechanism of the appearance of a critical field h corresponding to the limiting 
value of local moment is illustrated in figure 8, where the curves moUl = flm,,) are shown 
for various h. With decreaseofh the distance between stable and unstable self-consistent 
solutions also decreases. For critical h they become equal to each other and a contact of 
a straight line muut = n7,. and curve mDU, =Am,,) takes place. For lower h, common 
points of two lines are absent. which corresponds to the absence of self-consistent 
solutions. 

Anotherimportant peculiarityconsistsof thedecreaseof thedepthoftheE(m)curve 
minimum with increase of 0.  Coefficients of parabolae describing the E(m) curves near 
the points of the minima are equal to 0.026. 0.015 and 0.004 for angle 8 equal to o", 
90" and 180" respectively. These coefficients may be considered as values inverse to 
'longitudinal stiffness' of magnetic moments at a given 8. The smaller the coefficient, 
the larger are the fluctuations of the moment length for the states characterized by this 
8. Note that the final value of the longitudinal stiffnessof the magnetic moment [2] at a 
given temperature T 

T = (a(m)/aT)-' (18) 

is also dependent on the position and energy of minima of E(m) for different 8. In (18), 
(m) is a statistically averaged value of local moment length. The important role of 
parameter t for the explanation of temperature properties of itinerant magnets was 
discussed in detail in [2]. 

3.2. Nickel 

Calculations analogous to those discussed above were carried out for Ni (figures 5 and 
9-11), The dependencesm,(O) obtained within the framework of different approaches 
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Figure 9. The mo(8) functions for Ni. The cal- 
culations for spiral structures with 8 = (0,0,2a/ 
a): e, the present calculation, scheme A; 0. the 
presentcalculation,schemcB; A,resultsof[lS]; 
0,  resultsof [17]. The results of our calculations 
for spiral structures with = 90@ and q parallel to 
the z axis are represented by rhombus (0). For 
latter spiral StNCtUrCS schemesA and B are idcnt- 
ical. All our calculations have given the second, 
zero, branch of thcmp(8) function. In particular, 
for spirals with q = (0, 0, k / a )  and calculation 
scheme B the second branch lies from Ob+ close to 
60", till 8 = 1809. 

are shown in figure 9. Common features of the results of all calculations are, first, 
relatively fast, in comparison with iron, decrease of mo with increase of 8 and, secondly, 
the zero value of mo for 8 = 120". Simultaneously, there are substantial differences 
between calculated dependences. In particular, Haines [17] obtained a faster decrease 
to zero of mo(8) in comparison with other calculations. 

All calculations carried out in the present paper have given mo(8) curves consisting 
of two branches. Each branch is defined only for a restricted interval of 8 values. One 
of the branches assumes zero values. The presence of two branches follows identically 
from the analysis of the moat =f(m,,) curves calculated for different 8. (The general 
form of mout =f(m,.) curves is similar to that shown in figure 2.) 

At present we cannot exclude the possibility of the existence of two mo(@) branches 
for models used in [15,17]. Indeed, in (151 only the maximal values of self-consistent 
moment were calculated and the question about a second stable state was not addressed. 
In [17], the curves maur = flm,,) were considered but for a very rare grid of angle 8. 

Another important conclusion following from the analysis of figure 9 is an essential 
difference of the mo(8) curves obtained within different schemes of self-consistent 
calculations. The allowance for the perpendicular component h,  of the constraining 
field leads, in the case of nickel, to the substantially faster decrease of m, with 8 increase. 
The previous investigations [14, 151 permit one to explain this in terms of the different 
influences of the explicit allowance for h, in the cases of Fe and Ni. Indeed, the value of 
hi enters into the non-diagonal blocks of secular matrix (11) and influences, first of all, 
the extent of hybridization of opposite spin states. As was discussed in [14, 151, the 
influence of interspin hybridization upon the value of the local moment in iron is 
substantially weaker than in nickel. This property is directly connected with the pecu- 
liarities of electronic structure of Fe and Ni [E] .  

In figures 10 and 11, the curves m(h) and E(m) are represented, which characterize 
the longitudinal fluctuations of magnetic moments. All calculations for Ni were carried 
out with the use of scheme B. As in the case of iron, there are magnetic configurations 
that cannot be stabilized by any 'external' field. In particular, for 8 = 0 the minimal 
possiblevalueofmisclose to0.47 pB. Theotherpropertyofthelongitudinal fluctuations 
of iron also remains true in the case of Ni: with increase of 8 the depth of the E(m) 
minimum at non-zero value of m becomes less. That is, the longitudinal stiffness at a 
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Figure 10. The m(h) C U N e S  of nickel for angles 
0 = V (curve I) .  MI" (curve 2). 90' (curve 3) and 

unstable states. 

Figure II.Thr E(m) curves of nickel for angles 
8=0'(curve 1),60"(curve2),90"(curve3)and 

120" (curve 4). The broken parts of curves show 120" (curve 4). 

fixed Odecreases with increase of 8. For a critical value of Owhere the stable solution at 
non-zero m disappears, longitudinal stiffness becomes practically zero. For the stable 
state with zero mu, in contrast, the longitudinal stiffness at a fixed O increases with 
increase of O (figure 11). 

4. Simple scheme of statistical averaging 

The information about excited statesof Fe and Ni discussed in the previous section can 
be used within the framework of different schemes of statistical averaging aimed at 
the calculation of temperature dependences of electronic properties. Consideration of 
variousschemesofaveraging, comparisonof the results thusobtained with experimental 
data, and choice of the most reliable method present a serious problem. In this paper, 
we restrict ourselves to the consideration of a simple averaging scheme corresponding 
to the paramagnetic state. The results of calculations are compared with the respective 
results of Hubbard [a, 37,381. 

As in [4 ,37 ,38] ,  let us focus on the consideration of one atom. We suppose that the 
number of magnetic configurations for which the average angle between the spin of this 
atoniandthe spinsofneighbouringatomsisequal to Oisproportionaltog(O).Tomodel 
twoopposite limits of short-range magneticorder (SRMO) we shallconsider two different 

Let symbol k number the nearest neighbours of the atom considered and OK be the 
angle between thecentralatomand thektb nearest neighbour. In thelimitofverystrong 

fomsofg(e). 
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Figure12.Totalenergyofstablestatesin thecase 
of iron. The projection of the total energysurface 
on the 8-m plane show the integration area in 
formula (19). 

ferromagnetic SRMO all 8k are approximately equal to one another and, as a result, the 
average angle 

1 e = - X e k .  
'k 

(n is the number of nearest neighbours) is approximately equal to any of the ea. Hence 
to estimateg(8) we can consider the central atom and any one of its neighbours. For two 
spins that can assume arbitrary relative directions, the number of configurations with 
given interspin angle 8 is proportional to sin 8. Therefore the first form ofg(8)  we shall 
use isg,(6') = sin 8. 

If we suppose that SRMO is negligible, the angles 8, should be considered as inde- 
pendent values. Then [39] the dispersion of g(8) distribution is n time smaller than for 
every8,value. Tomodelthisproperty weshallconsiderthesecondformofg(8),g2(B) = 
6(8 - n/2), which corresponds to an infinitely narrow distribution. (This distribution is 
correct in the limit of n tending to infinity.) 

The partition sum corresponding to the states of the atom considered will be assumed 
to be proportional to the integral 

[ d s g ( e )  1 dmf(m) exp[ - m. 417-I (19) 
(ma)  

where (me) denotes integration over values of m stable for a given 8. In the case of Fe 
the integration area may be seen in figure 12. (We restrict the integration to stable states 
because only statescorresponding to the minimum of total energyare considered, within 
the density-functional approach, as those which may be really occupied by the system.) 

Dependingon the adopted scheme of averaging the functionf(m) in (19) may assume 
two different forms [38]: 

f l h )  = 1 (204  
or 

f2 (m)  = mz. (20b) 
The choice of f ( m )  in the form (206) means that all states enter into the partition sum 
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on anequal footing and their contribution isdefined by theenergyof the corresponding 
states only. The appearance in this case of the multiplier mz is connected with the 
Jacobian of the spherical coordinate system. The choice of f(m) in the form (200) 
corresponds to  the supposition that at first the averaging over m is carried out for each 
0 and then the values obtained are averaged over 0. The latter scheme of averaging 
seems to be closer to  the approach used in [5]  within the framework of the KKR- 
CPA method, where the excited states of the system are assumed to be characterized 
identically by the unit vectors showing the directions of atomic magnetic moments. The 
lengths of magnetic moments do not influence the contribution of states to the partition 
sum [5].  

As we consider the paramagnetic state, the magnitude of average magnetization 
does not enter into (19). 

Changing the order of integration in (19) we obtain 

L M Sandratskii and E N Kuvaidin 

Here (0,) denotes the integration over angles 8for which the given value of m is stable. 
Theprobabilitydensity for thelocal magneticmoment length will beestimated using 

the formula 

Note that a consistent statistical-mechanics model must be self-consistent as regards 
the input and output extent of the SRMO. Simple calculations based on formula (19) 
do not satisfy this condition. However they permit one to estimate the limits of the 
dependence of P(m) distribution on the extent of SRMO. 

To calculate integrals (21) an interpolation of E(8,m) was carried out. First, the 
energy of the minimum of E ( m )  (see e.g. figure 5 )  was interpolated as a function of 8. 
Then the E(m) curves corresponding to various 8 (figures 7 and 11) were interpolated, 
for a fixed 8. with a fourth-order polynomial of m - mo(8). Calculated coefficients at 
second, third and fourth degrees were also interpolated as the function of 8. The 
interpolation thus obtained allowed us to restore the E(m) curve for any 8. In the case 
of Fe, thecalculatedE(0,m) surfacecorresponding to thestablestates isshown in figure 
12. Note that in the case of FCC structure the calculated spiral configurations cover the. 
interval of 8 from 0 to 120". Therefore, in consideration of Ni an extrapolation was used 
for angles 12&180°. 

I n  figure 13, the curvesp(m) calculated for iron are shown. The curves p,,(m) and 
pZi(m) appear to be ratherclose toeachother for bothvaluesofj. Naturally,curvepzj(m) 
&somewhat shifted to larger values of m relative top,,(m) because of the  additional 
multiplier mz in (21). The closenessof the curvesp,Jm) andpa(m) means that the most 
probable values of magnetic moment are distributed within a rather narrow interval. 
Hence, one can draw aconclusion that in iron there is a fairly well defined local moment. 
The states connected with the zero branch of the m,(S) function do not make a marked 
contribution top(m). Asharp increase ofp(m) near m = 1 . 3 9 ~ ~  is aconsequence of the 
fact that for a wide interval of 8 the boundary between stable and unstable states passes 
near this value (figure 12). 

The comparison (figure 13) shows that in the case of iron the dependence of p(m) 
distribution on the form of function g(8) is rather weak. The replacement of g,(8) by 
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Figure 13. Probability density of magnetic 
moment lenglh in the case of iron: ---. curve of 
[4,38]calculatedwithf,(m) = m'forT= l.09Tc. 
Present calculations: p , , ( m ) ;  
pl2(m);-.p2,(m);----,p,,(m). In our cab 
culations the experimental value of T, = 1043 K 
has been used. 

g2(8) doesnot influencesubstantially thegeneral form, the positionofthemaximumand 
even the quantitative characteristicsofp(m). This weakdependenceofthedistribution of 
the amplitude of magnetic moment on the extent of the SRMO is one more argument for 
the presence of well defined local moments in iron. 

Figure 13 also contains the curvep,,(m) from [4, 381. (We use the notationp2, for 
the curve of [4,38] because in the formula for the partition sum [4,38] the integral over 
the amplitude of random fields contains a multiplier analogous tof2 and the integral over 
angular variable includes a factor analogous to ql . )  Comparison of p2](m) with our 
corresponding curvespy(m) shows that they are qualitatively similar: all of them have 
a sharp maximum near the value of the ground-state magnetic moment and are quite 
narrow. However, there are noticeable quantitative differences. Our distribution 
appears to be more diffuse. We associate this difference with two factors. The first is the 
consideration, in [4], of d electrons only. As a result, the local magnetic moment could 
not be more than 2.5 f i g  for any excited state. The second factor is connected with the 
difficulty of taking into account the angular dependence of E(m) minimum depth within 
the framework of the single-site approximation used in [4]. 

Curvesp(m) in the case of Ni are plotted in figure 14. Calculations have shown that 
distributions py(m) keep, on the whole, the form of the corresponding curves of Fe 
(figure 13) although they are substantially more diffuse. However, the form of pli(m) 
curves changes drastically in comparison with the corresponding curves of iron. In 
particular, both curvespli(m) have a maximum at M = 0. The replacement ofgl(8) by 
g2(8)alsoleads,inthecase ofNi(figure 14),toasubstantialchangeofp(m)distribution. 
Thissensitivityofp,i(m) function to the valuesof parametersiandjshowsthat wecannot 
treat Ni as a metal with well defined local atomic moments. It is also important that the 
choice of averaging scheme is crucial in the cases of Ni and can drastically change the 
results of calculations. 

Comparison, in figure 14, of our curves with those of Hubbard [37, 381 shows that 
both calculations give an analogous character of the change of distribution p(m) on 
transition from the case g = g, to the case g = g,. However, the curves calculated with 
the same g(8) but within two different approaches differ considerably. In particular, 
Hubbard's distribution p2t(m) appeared to be more narrow than his curve pal (m)  in 
the case of Fe. On the contrary, our curvep,,(m) is substantially more diffuse than our 
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Figure 11. Probability density of magnetic 
moment length i n  the case of nickel: ---. curve 
of [38]calcuiated withfl(m) = I for T = 1 .38T~;  

m2 for T = 1.23Tc. Present calculations: 

-_ . pi2(m). In our calculations the exper- 
imental value of T, = 631 K has been used. 

___ .cumeof[37,38]calculatcd with[:@) = 

p d m ) :  -, p&); . ~ pll(m): 

corresponding curve in the case of Fe. To some extent the distinction of curves may be 
explained using the same arguments as in the case of Fe. First, the allowance for the d 
electronsonly 137,381 reducesthe region ofpossiblem values. In particular, any excited 
state has local magnetic moment smaller than or equal to mo(0). The second point is 
connected with the difficulty of taking into account the angular dependence of longi- 
tudinal stiffness within the calculational scheme of 137,381. However, these arguments 
seem to be insufficient to explain such small 'smearing' of the curve pTl(m) of [37,38]. 
We cannot point out the peculiarities of the physical model of [37,38] that lead to such 
anarrowpzl(m) distribution,especiallyfakinginto account that thep,  ,(m)curve of [37. 
38) gives almost uniform distribution of moment lengths in a wide interval lying on the 
left from maximum ofp&n).  

Figure 15 shows the temperature dependence of average length, (m), of local mag- 
netic moments, which is calculated using distributions (22). The values of (m) differ 
for different distributions. In accordance with the previous discussion, the relative 
difference of these values in the case of Fe is much smaller than in the case of Ni. The 
temperature variation of average local moment of Fe is also weak, for all p;,(m). and 
does not exceed a few hundredth of a Bohr magneton. In the case of Ni, the situation is 
substantially different: for p I  t(m) and pzl(m) distributions the scale of temperature 
variationof average magnetic moment iscomparable with itsvalue at Tc;forpt2(m) and 
p2*(m) distributions the variation is weaker but nevertheless exceeds 10%. 

The temperature dependence of (m) was also estimated neglecting the longitudinal 
fluctuations of moments, that is assuming that the only magnetic configuration cor- 
responds to each set of atomic moment directions [SI. The formula used was 

If we compare the results obtained with the same g(B), the neglect of amplitude fluc-, 
tuations leads to smaller values of (m) (figure lS(c)) than in the case of the use of 
distributions (22) (figures lS(a)  and ( b ) ) .  However. in the case of Fe this change of 
average length of moments is much less. These results correlate with the results of the 
calculations within the KKR-CPA method 191, which also gave the paramagnetic local 
moment of Fe to be close to the ground-state value. 
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Figure 15. Temperature dependence of average 
magnetic moment length calculated with the use. 
of (a) f = f2(m), and ( b )  f = &(m) functions and 
(c)offormula(23):0. Fe,g=g,(B);  A , F e , g =  
g?(B);O,Ni,g=g,(B); A.Ni ,g=g , (B) .  Inthe 
case of neglect ofamplitude fluctuations (formula 
(23)) the use of g = gL(B) leads to a value of (m) 
independent of temperature: 2.034 pB for Fe and 
O.Op,lorNi. 

Most calculations allowing for longitudinal fluctuations within the Hubbard Ham- 
iltonian approach (see e.g. [2]) give an increase of (m) with heating. In our calculations, 
the use of the function fi(m) = m2 to make an allowance for amplitude fluctuations 
(figure 15(a)) also leads, in all cases, to the increase of (m).  However, the use of the 
functionf,(m) = 1 (figure 15(b))results, forthep,,(m)distributionofFe,inaveryweak 
andnon-monotonicdependenceof(m). Finally, neglect of amplitude fluctuations (figure 
lS(c)) gives, in all cases, the constancy or decrease of (m) with increase of temperature. 
Thusdifferent approaches to the consideration of amplitude fluctuationsgive essentially 
different characters for the temperature dependence of (m). The comparisons carried 
out showthatdueaccountforamplitudefluctuationsistheimportant pointofaconsistent 
statisticalmechanics model. 

Note that, as we are interested in temperature behaviour of physical properties, the 
'smearing' of the Fermi step with increase of temperature is to be taken into account in 
the course of band-structure calculations. However, our estimations have shown that 
this mechanism has a weak influence on the form of thep(m) distribution. In particular, 
for both Fe and Ni the use of the Fermi function corresponding to the Curie temperature 
leads to a change of the values of mo(e) functions (figures 4 and 9) which, for the most 
part, does not exceed a few per cent. 

5. Conclusions 

A calculation scheme is realized that permits one to investigate both transverse and 
longitudinal fluctuations of local magnetic moments and is based on the use of a band- 
structure calculation method for the study ofexcitedmagnetic states. Some comparisons 
are made illustrating the role of allowance for longitudinal fluctuations as well as the 
role of detailed study of electronic characteristics of excited magnetic configurations. 
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Evidently, the question about the necessity and methods of taking static amplitude 
fluctuations of magnetic moments into account demands further considerable efforts 
(see e.g. discussion in [5.19]). A reliable answer to this question may be obtained only 
within the framework of a more general theory, which makes allowance for dynamic 
effects. This problem isvery complicated and is not discussed in the present paper. 
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